开源无线网络-OSRAN

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 316|回复: 0

深度学习在物理层信号处理中的应用研究(3)

[复制链接]

42

主题

42

帖子

140

积分

注册会员

Rank: 2

积分
140
发表于 2023-6-23 12:54:28 | 显示全部楼层 |阅读模式
(3)基于深度学习的干扰调整
MIMO系统中的干扰调整通过线性预编码技术来调整发射信号,使得接收端的干扰信号可以控制在一个降维子空间里,从而突破MIMO系统干扰问题带来的吞吐量限制。现有工作中已经有研究结果表明,利用深度学习可以提高干扰调整网络中的吞吐量,并取得优化结果。He等人在[6]中提出了采用DQN来获得干扰调整下最优的用户选择策略。在该机制中,中央调度器用来收集所有信道状态和每个用户的缓存状态,并将信道资源分配给每个用户。信道的时变过程用一个有限状态马尔科夫模型来进行建模,系统的状态定义为每个用户的信道状态和缓存状况。中央调度器用来为系统训练处最佳策略,对应的系统动作定义为是否为每个用户分配信道资源来进行数据的传输,来最大化干扰调整网络的吞吐量。DQN也可被用于认知无线电网络中次用户与主用户之间的干扰消除,次用户利用跳频和移动性来抵御干扰者[7]。
(4)基于深度学习的信号检测
基于DL的检测算法可以显著提高通信系统的性能,尤其适当传统的处理模块需要联合优化或是信道无法用常见的分析模型来表征时。论文[8]提出了一个五层全连接的DNN框架嵌入到OFDM接收器中来进行联合信道估计和信号检测。将接收到的信号以及对应的传输数据和导频作为输入,DNN可以推断出信道信息,而且可以用来预测发送的数据。在MIMO中检测中,基于贝叶斯最优检测器的迭代方法已经被证实有较优的性能和中等的计算复杂度。但在很多更复杂的环境下,未知的信道分布条件将限制这种检测器的效果。利用深度学习算法,可以根据一定的输入数据来恢复模型参数,从而提高检测器的自适应能力。同时,在一些情况下,深度学习算法还可以利用一些语义信息,例如接收器的位置和周围车辆节点的信息,来进行波束预测,从而提高系统性能。
4 基于DQN的信号检测机制
在基于位置服务的场景中,车辆或者用户需要不断发送信标消息来报告自己的位置,从而提高位置服务和网络性能。但有些车辆或用户会选择发送虚假的位置来获取更多的资源,影响了网络服务的效用。在MIMO系统中,传输信号往往包含了丰富的信息(到达角、接收功率等)可以在接收端利用信号检测技术对信标消息进行位置验证。我们提出基于DQN的信号检测机制,可以用于MIMO系统中发送者的位置信息验证和对信息伪造者的检测。主要的思想为,接收端对接收的信号采用最大似然估计进行假设检验,当接收到的信号通过检测检验时,则认为发送信号来自于发送者上报的位置。否则,认为发送者上报了虚假的位置信息。为了提高在多变的信道状态下的检测性能,在接收端基于DQN来预测采用不同的检测阈值可以取得的收益,并选取最优的检测阈值。系统框架如图4所示。
(1)系统模型
假设检验中的零假设定为发送节点上报真实位置信息,备择假设为发送节点上报了虚假位置信息。在每个时刻,接收端收到发送端的信号都与发送端与接收端之间的真实位置、信道状态和信号到达角有关。在已知发送信息和发送功率的条件下,接收端可以利用最大似然检测来对接收到的信号进行假设检验。
(2)基于DQN的检测阈值优化
在本文提出的机制中,将接收端的状态空间分为两个维度,第一个维度是发送端到接收端的信道状态,第二个维度是信道检测的结果。信道状态空间包括量化后的一系列信道指标,并假设信道的状态转移符合马尔科夫过程,即信道在当前时刻的状态都只与上一个时刻的状态有关。结果状态空间包括四种:真实数据检测结果为真、真实数据检测结果为假;虚假数据检测结果为真以及虚假数据检测结果为假。在每次动作过程中,接收端的直接奖励与检测结果有关,当检测结果正确时获得正收益,当检测结果错误时获得负收益。接收端的动作定义为进行信号检测的阈值,动作空间包括一系列量化的检测阈值。在每个片刻,接收端的混合策略为选择不同检测阈值的概率。基于本文第二章介绍的DQN原理,接收端在每次经历后,将自己选择的检验阈值、对应的状态结果和收益存储到经验池,利用CNN对Q函数进行训练预测,不断优化对检测阈值的选择。
4 总结与未来发展建议
在本文中,我们通过现有工作和案例证明了深度学习在物理层通信中的巨大应用潜力。除了以上介绍的几种应用方向,深度学习在端到端通信系统中也得到了一定的应用。不过,目前还尚未有结论基于深度学习的端到端通信系统性能是否会最终超过传统通信系统性能。另外,基于深度学习的物理层应用需要数据驱动,为了提高深度学习模型的训练效率,可以将需要长时间训练的模块进行融合,并需要考虑在良好的性能和训练效率之间的权衡。深度学习应用的兴起主要归功于各种可用的数据集,但目前用于无线通信相关的数据集仍然较少。数据的安全和隐私问题进一步限制了在真实世界对通信数据的访问功能。但为了基于深度学习的通信应用,需要一些开放性电信数据集的发布和共享。最后,5G复杂多变的通信环境,包括MIMO、毫米波通信以及NOMA技术等,也为深度学习的应用带来了巨大的潜力。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|OpenXG  

Copyright © 2001-2013 Comsenz Inc.Template by Comsenz Inc.All Rights Reserved.

Powered by Discuz!X3.2

快速回复 返回顶部 返回列表